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The phase behavior of a solution containing a mixture of large and small, cross-bridging (“two-sided sticker”)
particles is studied using a lattice model analyzed with the aid of mean-field calculations and Monte Carlo
simulations. Neither the large nor the small particles interact with each other (except for excluded volume
effects). However, the small particles can adsorb onto the surface of one or two large particles, in the latter
case providing a cross-bridge, i.e., an adhesive bond, between the large particles. The formulation of the
model is motivated by experimental studies involving agueous solutions of vesicles (the large particles) and
biotin—avidin—biotin cross-bridges. This system exhibits a first-order phase transition from a dilute to a
condensed phase of vesicles once the average number of stickers per vesicle exceeds a certain threshold
value. The statistical thermodynamic description of the system becomes particularly simple upon (Legendre)
transformation from the two-component canonical ensemble to a “mixed” ensemble involving a constant
chemical potential of the cross-bridge particles. The phase separation behavior of the system is calculated
for two sets of molecular parametrs, revealing good qualitative agreement with relevant experiments.

I. Introduction avidin is bound to a biotinated membrane lipid, pulling it off

. . . . _the vesicle would result in detachment of the hydrophobic tail
In this paper we present a S'”?p'e Stat'St'Cal. thermodynamic from the membrane rather than in dissociation of the avidin
model to describe a rather special condensation phenomenon'biotin bondé-13

the aggregation of large particles mediated by small, cross-bridge . .
particles. These cross-bridges induce a “specific adhesion” The size and shape of the aggregates formed upon adding

process, which, above a certain critical concentration, can lead@Vidin to @ solution containing biotinated vesicles may strongly

to a macroscopic phase separation involving dilute and con- dePend onkinetic factors associated with the efficient and
centrated phases of the large particles. essentially irreversible binding of the avidin to the biotinated

The large particles in the model system that we have in mind Iipidsl.. Tﬂe frapid,'avid;r;-metlj'iatgd adhfesionl of vesic{;etzgscan
are lipid vesicles, i.e., closed, spheroidal but slightly deformable, result in the formation of long-lived (e.g, fractal) aggreg '

lipid bilayers, of diameters in the range of 5000 nm, H_owever, Fhe Iong-time_behavior (.)f this system may b? quite
embedded in an aqueous solution. A common example of adlffergnt since cross-bridged vesicles can_st_lll dlsso_c!ate by
cross-bridge particle is a biotiravidin—biotin complex. The breakln_g the weaker bonds between the b'Ot'nate.d lipids and
avidin receptor has four biotin binding sites, two on each &ide. the vesicle m_embrane_. In other words, the equmbrlum_ state of
If some of the lipids constituting the vesicle membrane are the system is most I|_ke_ly govgrgned_ by the formation and
biotinated (i.e., chemically connected to biotin residues through dls_spmat_lor_l of these biotinated lipivesicle b_onds and not the
their hydrophilic headgroups), then by binding one or two biotin gwdm—bl_otln bond.s._ Indeed, recent experlméﬁmveal that
ligands onboth of its sides, the water-soluble avidin can form In a solution .cqntalnlng a small concentratlon of receptors,. say
a cross-bridge between two vesicles. This bietimidin—biotin five s.tr.eptawdm molecules .(A) per yegcle (V) (egch V.e'.‘:".de
bridge is often used as a model system for studyipgcific containing, on average, 80 biotinated lipids), the vesicles initially

adhesiorphenomena, which are of great interest in a variety of 2d9regate into large clusters. However, after a while these
biological systema:3 clusters redisperse into isolated vesicles. Furthermore, the

A number of experimental and theoretical studies have experiments show that the long-time behavior of these solutions
focused on studying the kinetic pathways and metastable is independent of the mode of preparing the dispersion. Namely,

structures characterizing the avidin-mediated aggregation oftgiVStatet.Of ‘?‘ggf egtat|ontk(]:ietp?rr11ds onlty on rt]he awdw;tc:j bt'Ot'n
biotinated vesicles and related systeirfs.Many other studies (h ) rjno, Indica '?g tha o N slys em ?S _reafc € thrue
have concentrated on measuring and interpreting the forces andnermodynamic equilibrium. One clear conclusion from these
energies involved in avidinbiotin binding and cross-bridging, experiments is that macroscopic phgse separation takes place
and their dependence on factors such as membrane fluidity anaonc.elA/V = ta.e?(ceggsba t(;erttalél r?r|t|gal value ¢ 10, for
elasticity’ 16 Among the conclusions of these studies is that V€S!C1€S containing lotinated hea g.roups). o
the noncovalent avidinbiotin bond is generally much stronger ~ Our goal in this paper is to explain, qualitatively, the
than the “hydrophobic” bond between the hydrocarbon tail of equilibrium phase behavior of a solution containing biotinated
the biotinated lipid and the vesicle membrane. Thus, once theVesicles and avidin cross-bridges. More generally, we are
interested in the phase behavior of a system containing large

" This paper is dedicated to Raphy Levine, our colleague, mentor, and Particles, between which attraction takes place upon adding
friend, on the occasion of his 60th birthday. small, cross-bridging particles into the mixture. To this end
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Recall that in the mean-field approximation neither the
dimensionality nor the exact geometry of the lattice is taken
, " into account; the only relevant structural parameter is the lattice
: X % S coordination numberz. Nevertheless, for concreteness, let us
regard the system as a 3D cubic lattice, consisting sftes of
\d > volume v = VIM = d?, so that each site can contain exactly
AN *; e - one vesicle, Figure 1. Since the stickers are much smaller than
1 the vesicles, each vacant lattice site can contain a large number
of stickers,s; sis approximately equal to the ratio between the
, vesicle’s volume and the volume of a biotiavidin—biotin
} =G cross-bridge.
4L Three kinds of stickers are possible in the system: (i) “bridge”
(b) stickers connecting two nearest-neighbor vesicles; (i)
P “adsorbed” (a) stickers whose one end is anchored to the surface
. of a vesicle and the other is free; (iii) “free” (f) stickers both
ends of which are free. We shall uggto denote the maximal
Figure 1 Sch_ematic illustration of the model ona 2D square lattice. humber of stickers that can serve as connectors between the
Each lattice site can accommodate one vesicle (large particle). The ;o6 1y nearest-neighbor vesicles. In principiedepends
cross-bridging “stickers” are either free (f), i.e., dispersed among the . . : .
vacant sites, or adsorbed (a) onto an exposed surface of a vesicle, oP" the contact area betwe_gn adjacent \_/eS|CIeS, which, In turn,
adsorbed onto the surfaces of two neighboring vesicles, thus forming depends on their deformability. The maximal number of stickers
an adhesive bond (b). that can adsorb onto the surface of one vesicle will be denoted
aszv,. In our lattice model this implies that, is the maximal
we have formulated a simple lattice model, each cell of which number of stickers that can populate a face of the lattice
can contain one vesiclehus accounting for vesictevesicle separating between two neighboring sites, one empty and the
excluded volume interactions. We ignore the nonspecific long- other occupied by a vesicle. Finally, we us¢2 = sto denote
range attractions between vesicles but explicitly include the the maximal number of free stickers per vacant lattice site. (We
indirect attractions mediated by the avidin cross-bridges. Fol- may regardv; as the maximal number of stickers on a lattice
lowing the experiments reported in ref 17, we assume that the face separating two vacant sites.) From this description it
number of biotinated lipids greatly exceeds the number of avidin follows that we can imagine the a and b stickers as moving on
receptors. For these conditions it is safe to assume that all thethe faces of the lattice cells, whereas the f stickers populate the
biotin binding sites on the avidin receptor are occupied and vacant lattice cells. The conditions of experimental relevance
hence all cross-linkers (hereafter also referred to as “stickers”) correspond tos > vy > vy,
are actually (BL)—A-(BL), complexes, with BL denoting a The energy change involved in the adsorption of one end of
biotinated lipid molecule. On the basis of the notion that the a sticker to a vesicle will be denoted asTe, wherek is
BL-vesicle bond is considerably weaker than the-B1.bond, Boltzmann’s constant and the absolute temperature; i.es,
the phase behavior of the system can be derived by treating it> 0 is the stickervesicle interaction energy, in units &f.
as a mixture of vesicles and (Bl-)A—(BL), stickers. We ignore nonadditivity effects, assuming that the adsorption
energy is independent of the number of adsorbed stickers.
Similarly, we assume that the binding energy associated with
the formation of a sticker bridge between two vesicldgy, is
independent of the number of bridges. Typicadlyx 2¢,; yet,
we shall treatep, and €, as independent variables. Note that

particles representing the vesicles andmall particles repre- these energies are measured with respect to the energy of the

senting the “stickers”. We assume that the vesicles are slightly free stickers; = 0. ] ) )
deformable spheres, all of the same diameteiThe stickers, B. Free Energy. Every configuration{ C}, of theN vesicles
corresponding to the tight complex formed between streptavidin On theM lattice sites dictates the numbercosites,m,, available
and four biotinated lipids (two on each side), may be viewed !0 the three types of stickers in the systen= f, &, b. Since
as a peg; each of its ends can adsorb onto the surface of ondree stickers can only be found in vacant lattice cetis= (M
vesicle. Two vesicles form a bound pair when they are bridged ~ N) = (1/2)z2M(1 — p), wherep = N/M is the density (volume
by one or several stickers, as illustrated in Figure 1. This fraction) of vesicles in the system. In principle, one can include
sticker-induced adhesiohetween vesicles can lead to their N M the small fraction of free stickers that may be present in
aggregation and eventaully to a macroscopic phase transitionth€ “corners” of a site already occupied by a vesicle. This
from a dilute to a condensed phase of vesicles. refmement does not affect our conclusions and will therefore
The phase behavior of this system will be analyzed on the P& ignored.
basis of a lattice model, which will be solved using a mean-  Bridge stickers, connecting nearest-neighbor vesicles, are
field approximation. The use of the lattice ensures that excluded necessarily confined to the faces between pairs of lattice sites
volume interactions between the vesicles are taken into accountoccupied by vesicles. Using the above defintionpive have
More significantly, the model explictly accounts for sticker M = voNw WhereN,y is the number of doubly occupied pairs
vesicle adsorption and sticker-mediated attraction between theof nearest-neighbor sites. For we havem, = va Nov+(2va
vesicles. Stickersticker and stickervesicle excluded volume  vb)Nw, WhereNoy is the number of singly occupied site pairs.
interactions are taken into account in an approximate fashion. The second term im, accounts for those adsorbed stickers at
Some of the qualitative conclusions derived from the mean- doubly occupied faces that do not form bridges.
field analysis will be tested against Monte Carlo (MC) simula- Consider now a particular configuratiofC}, of the N
tions of a 2D model system. vesicles on theM lattice sites. The Helmholtz free energy

Il. Theory

A. Model. Consider an aqueous solution of total voluxhe
and temperatur@, containing two kinds of particlesN large
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the stickerscorresponding to this‘frozen” configuration, I'=F — nug @)

F«{C}), is given by
=—-MS§, + Zma In(1—6,) (8)
Fo= > [Nuee + M,S] 1) «
@ =-MS§, — zmaln(l—i-lga)
whereS, is the entropy, per sticker site, corresponding to stickers ¢

of type a. Note that in (1) and elsewhere in this paper we where in the last equality we have used the relafin= A&,/
measure energies, free energies, and chemical potentials in unit$1+ 7£.) with £, = exp).

of kT and entropies in units &. The above expression fércan now be used to evaluate the
Assuming that except for excluded volume (or area) effects (dimensionless) osmotic pressure in the systene —(3F/
the stickers do not interact with each other, we can write IM);nn = —(0T/dM)1 N, as well as the chemical potential of
the vesiclesyy = (0F/ON)tmn = (AI/0N)tm 4. These relations
~S=0,In 0, + (1= 6,)In(1—6,) (2 vyield

where 6, = ns/m, is the fractional occupation at sites by
stickers andh, is the number of stickers of type; () N =
n. Note thatt; is, in fact, a volume fraction whered&g and6,

P=—In1-p) - %xpz + %va In@+4 O

are area fractions. = |n(—L) —p — 2, In(L+ 2E) + Zzv, In(L + 2
The equilibrium values of tha,’s, and hence thé,’s, can e 1-p P aln( ) 27" ( )
be determined by minimzings with respect to these variables. (10)
The minimum conditions lead, as expected, to the equality of )
chemical potentials with  given by
o 1-6 1+ 48
My ==ty = pis=In A ®) - ) -7
2 =2zvyIn 10, zvyIn 15 e (11)
with
The first two terms in the equation of state, (9), constitute
0, the familiar expression for the pressure of an interacting lattice
Uy = |n1 —p  C (4) gas of densityp in the Bragg-Williams approximatiort® In

¢ the case of an ordinary lattice gas the interaction parameter

is simply related taw, the pair potential between two particles
occupying nearest-neighbor sites= zw/kT. In our system
this direct interaction potential is replaced by the sticker-
mediated interaction defined by (11), which depends on the
stickers’ chemical potentialis = In A, and the adsorption and
binding energieg,, &,. Indeed, it is not difficult to show that
kTy/z = werr is the (negative) free energy change associated
with bringing two remote vesicles into contact (nearest-neighbor
positions), at constant chemical potential of the stickers.
The last term in (9) is the contribution to the pressure arising
from the free stickers in the system. Recall that?2 is the
m = %zM(l — Py (5) number of stic_kers per lattice site._ Note also that the ad;orbed
and bound stickers do not contribute to the pressure in the
1 1 system. (Of course, the bound stickers affect, throygthe
= — =7Mo? - == — number of vesicle clusters and hence the pressure in the system.)
Mo = 2M(1 = pJva 52Mp"(2re = ) = 52Mp(2va = pvs) In analogy to (9) the first two terms in (10) correspond to the
chemical potential of an interacting lattice gas of vesicles of
densityp. The two last terms in (10) represent the change in
the free energy of the system (the reversible work), associated
with adding a single (“immobile”) vesicle to a system already
Using thesem,’s in (1) we obtain the mean-field value of  containing stickers with the given chemical potential
the stickers free energ¥s. Adding the entropys, associated C. Phase Behavior. Under certain conditions the sticker-
with the (random) distribution of th&l vesicles over theM mediated interactions between the vesicles can induce a
lattice sites, we obtain the total free energy of the system macroscopic phase separation, with the two coexisting phases,
_ hereby denoted as d (“dilute”) and c (“condensed”), character-
F=F,+M[plnp+ (1—p)In(d— p)] (6) ized by different vesicle densities and different sticker concen-
trations. At a given temperature, there are three equilibrium
where the expression in square brackets is the vesicles’ entropyconditions: equality of pressurdd?)=P(©), vesicle chemical
per lattice site—S,/M. potentialsu@, = u(©,, and stickers’ chemical potential§” =
To analyze the phase behavior of the system, it is convenientygc). The third condition is automatically ensured if the
to perform a Legendre transformation from the Helmholtz free pressures and chemical potentials of the coexisting phases are
energyF = F(N, n, M, T) to the “mixed” thermodynamic  calculated using (9) and (10) for the same valué of the two
potentiall' = T'(N, us, M, T), phases. In other words, our coexistence equations are

denoting the chemical potential aftype stickersi = exp(us)
is the absolute activity of the stickers. Singe= 0, we find4
= 0i/(1 — 6;). Also, since typicallye, ~ 2¢5 > 10, it follows
that6, > 60,> 0; and hencé); < 1, implying 1 = 6%, i.e., the
activity is equal to the concentration of free stickers.

At this point we introduce the mean-field approximation,
replacingN,, andNoy by their values corresponding to a random
distribution of the vesicles; nameN,, = (1/2)zMp? and Noy
= zMp(1 — p). This yields

m, = %ZMpZVb
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PO 2, ) = P 2, T) (12)
1O, 24, Ty = w0, 2, T) (13)

Using (9) and (10) in (11) and (12), we obtain the equation

describing the coexistence curve, which separates between the

one-phase and two-phase regimes

2 1+ 1|1 — 2p|
Xcoexistence I1- 2P| In(l —11- 2&) (14)
The spinodal curve, correspondingd®/dp? = 0 , is given by
1
Kepioda =~ (15)
spinodal p(l _ P)

Both of the above equations imply the existence of a critical
point atp = pc = 0.5 andy = . = 4. Not surprisingly, the

shape of the coexistence and spinodal curves, as well as the,

critical values ofy andp, are those of an ordinary lattice gis.
The only diffrence between our system and the lattice gas is
that in our case the magnitude of the interaction paramgter,
is controlled by the stickers’ chemical potential through (11).
Substituting (11) into (14) and (15), we obtain the coexistence
and spinodal curves in the-1 plane. These curves depend of
course on the molecular parameteysy, €, €,. In Figure 2

we show these curves far= 12, v, = 4, andep = 2¢5= 10. In

the p—A plane the dilute and concentrated phases, at coexistence,

are connected by horizontal tie-lines. Experimentally, the
overall sticker concentratio/M or, equivalently, the sticker-
to-vesicle concentration ratio = n/N, are more convenient
control parameters thah Thus, our numerical results in the
next section will be reported in terms of-p diagrams. In

this representation the coexistence curves are not symmetrical

as in Figure 2, and the tie-lines are not straight.

Because phase separation can only take plage-ify. = 4,
it follows from (11) that for any given values &f and&, there
is a critical value of the sticker activityl;, such that phase
separation takes place onlyAf> A.. (In Figure 24, is the
lowest point on the coexistence curvepat 0.5). Explicitly

c—1
Sb_cé‘a

wherec = exp(4izvy). Forep = 2¢,= 10 andz= 12,v, = 4,
as in Figure 2, we find that; ~ (¢ — 1)/&, ~ 4/zvpép is very
small, on the order of 1. Other reasonable choicesoand
vawould yield similar estimates. Fdr< 1 we havel ~ s <
1, indicating that the concentration of free stickers in a phase-
separated system is generally very small. Of coufgethe
(surface) concentration of binding stickers, is much higher,

Ae=

(16)
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Figure 2. Coexistence (solid) and spinodal (dashed) curves irpthe

— log 4 plane, wherep denotes the volume fraction of vesicles and
the activity of the stickers. These curves correspond to a system with
= 12, v, = 4, andep, = 2¢, = 10.
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Figure 3. Coexistence (solid) curve, separating between the one- and
two-phase regions in the—1/o plane, for a system wita= 12, v, =

4, v, = 100, v; = 700, ande, = 2¢, = 10. The open circle marks the
critical point. The dashed tie-lines correspond to different values of
sticker activity: from top to bottomA/10¢= 4.08, 4.62, 6.11, 7.08,
7.98, 9.01, 9.88, 11.4.

The chemical potential of the stickers in the two phases are

ensuring the formation of a condensed phase of vesicles. Noteequal, but not their concentratioggs= n/M = op; as befores
also that, at a given temperature, an upper bound on the value= n/N denotes the number of stickers per vesicle. For every

of y is set in the (hypothetical) limit of high concentration of
free stickers,{ — ). In this limit y — zvy, IN(&p/&a) = zvp(en

— €q), indicating thatvp(en — €2) = wesr is the effective pair
potential between two vesicles. Indeed, in the limit of high

value of the stickers’ activity} (1 > 1), the values oby and

oc can be determined using = Y oM (4, pi)0(A)/Mpi, (i = d,

c). The 15 vsp phase diagrams obtained in this way are shown
for two representative cases in Figures 3 and 4. The solid curves

all the adsorbing and binding sites on the surface of the vesiclesin these figures separate between the one- and two-phase

are occupiedd, 0, — 1), implying thatvy(ep, — €5) is the energy

regions. The dashed tie-lines connect between the coexistence

change associated with bringing two isolated vesicles (already points, p4, 04 and pc, o (€ach pair corresponds to the same

“covered” by stickers) into close, binding, contact. In general,

values of, uy, andP). The o(p) tie-lines in the two-phase

as noted above, condensation already takes place at very lowegion are calculated using the conservation conditions (“lever

concentrations of stickers.

Ill. Examples and Analysis

In the two-phase region a dilute phase of vesicles of density
pd coexists with a condensed phase of dengity= 1 — pq.

rules”), p = ydpd + yepc @andop = y4odpd + ycocpe, Wherey;
= Mi/M is the volume fraction of thégh phasei(= d, c). These

two equations yieldr = (oc — gg)/p + (pcOc — paod)/(Pc — Pd)-

The phase diagram in Figure 3 corresponds to the following
choice of model parameterg= 12, v = 700,v, = 50, v, =
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2.0 , \ — values ofa (those shown in Figures 3 and 4), > 6, > 6;.
Now, an increase in — A implies an increase ip. — pq, and
hence fast increase of, c and fast decrease af, g Since the
b-stickers provide the main contribution do(throughmy,) we

find that, initially, oc increases whereasy decreases. Agd

] increases furtherp. — 1 whereasog — 0, implying thatmy ¢
approaches a finite saturation value ¢ — zvy/2), whereasrx o/

pd increases without bound. This explains the rapid increase
in g4 as compared to; at high values oft (equivalently,p).
Note, however, that for most values @iwvithin the two-phase

15 r

A=3.33E-5

1/6 10 region the majority of stickers are present (as cross-bridges) in
the condensed phase. The adsorbed (a) stickers play a secondary
role in this interplay as their coverage,) is the same in both
phases.

A= 8.60E-5 A conclusion of experimental relevance that can be derived
0.5 ! \\\‘_ A= 131E-4 from the calculations shown in Figures 3 and 4 involves the
N A phase behavior of the mixture upon varying the average number
iyttt lepttentesleterterler st of stickers per vesicleo) at constant, low, concentration of
TN A= 176E-4 vesicles, sayp ~ 0.01, as was done in ref 17. We note that at
‘ ‘ ‘ ‘ this, low p, region of the phase diagram the phase boundary
0’00.0 0.2 0.4 0.6 08 1.0 (0(p)) increases rapidly witlp. In other wordsoq is a very
p sensitive function opg; (on the other hand. andp. vary quite
Figure 4. Coexistence (solid) curve, separating between the one-phaseSIOW|y)' Thls |_mp||es that, at _constant (smalp)_ ves_|c_:le
and two-phase regions in the-1/o plane, for a system wita = 4, v, condensation will only take placedfexceeds a ceratin minimal
=2, va= 15, = 50, ande, = 2¢, = 10. The open circle marks the  value @q); resulting in phase separation between a very dilute
critical point. and a highly condensed phase of vesicles. Indeed, in the

experiments reported in ref 17 it was found that for 0.01
4, ande, = 2¢, = 10. The results in Figure 4 correspondzto  no transition takes place when= 5 whereas whew = 10
=4,y =50,va= 15,1, = 2, andep = 2¢,=10. Thefirstset = macroscopic aggregates of vesicles appeared in solution,
of parameters corresponds, albeit very crudely, to a 3D systemindicating 5< o4 < 10.

of vesicles (of diametad ~ 100 nm) and biotir-avidin—biotin Finally, in Figure 5 we show four representative snapshots
cross-bridges (of cross-sectional area and volume on the orderys \vc simulations performed on a 2D square lattice, using the

of 30 nn¥ and 10 nm, respectively). The values used faf  same molecular parameters as those in the mean-field calcula-
and ep are considerably smaller than those estimated, on the ;o of Figure 4 ¢ = 50, va = 15,1 = 2, 2= 4, ey = 2, €a

basis of force measurements, for the energies associated with_ 10). Of course, we do not expect to find quantitative

puIImg oué_t?se ﬁhar"ns Igft':he bltoténahted Ilpldst:‘rotnlhthew host agreement between the mean-field predictions and the simula-
membrane. should be noted, however, that these meéa- ;¢ (It is well-known, for example, that the mean-field value

zjrgatgggs” ?(;o:t:i?n esct)lgwfﬁssm;oerr :;1 dpli)l:}ggtthingﬂ IZ];( ?sof the critical interaction parametgg = 4 of an interacting 2D
p ) ' P lattice is about 1.75 times smaller than the exact véfie.

free in solution (as we assume for our stickers), the hydrophobic . . .
lipid tails are mostly likely collapsed, thus reducing the  The simulations were performed in the samé {, M, T)
unfavorable exposure of the hydrocarbon chains to water, Statistical ensemble as the mean-field calculations. That s,
implying a lower value ok, as compared to that obtained by ~Particles (vesicles) were allowed to move olla= 100 x 100
force measurements. At any rate, it should be emphasized thagduare 2D lattice, with periodic boundary conditions. More
our very approximate model calculations are not intended to explicitly, choosing a given sticker activity,, random MC
simulate any specific experimental system but, rather, to provide moves were attempted and accepted or rejected according to
a qualitative explanation for some of the phenomena observed.the usual Metropolis criterion, usil§e = F{({C'}) — F{({C})
In the same spirit, the “molecular” parameters used to obtained as the “energy difference” associated with the attempted move;
the results in Figure 3 correspond to a hypothetical 2D model Fs{{C}) andF{{C}) denote the free energies corresponding,
system. The same parameters were also used in the MCrespectively, to the final and initial configurations of the vesicles,
simulations described later in this section. cf. (1). Note that the stickers are not explicitly included in the
Returning to Figures 3 and 4 we note thatlasxceedsl. simulation. Their distribution among the various vesicles, for
and phase separation begins to take place, the average numbeny configuration{C}, was calculated using the chemical
of stickers per vesicle in the condensed phase is larger than inequilibrium conditions (4). More explicitly, in each MC step,
the dilute phasep. > o4 Upon further increasing. the the interaction energy between two neighboring vesicles was
difference Ac = 0. — o4 continues to increase, reaching a calculated asvyfpen, With 0p calculated using (3) and (4).
maximum, beyond which it decreases monotonically with Similarly, the energy of an isolated vesicle is givenZpyfa¢a,
eventually becoming negative. The crossover from positive to etc. In other words, in these simulations the distribution of
negativeAo occurs “deep” in the coexistence region (i.e., when stickers is equilibrated at each MC step. Physically, this
pd = 1 — pc < 1), wheregy increases much faster thag A assumption is valid when the lateral diffusion of the stickers
qualitative explanation of this behavior can be given as follows. over the vesicle surfaces and in and out of the bulk is
Since for a givent the 6,'s in both phases are equal, the instantaneous (on the time scale of vesicle diffusion), regardless
difference between thei, = YoM o(pi)0i/Mp; reflects the of the barrier heights associated with such transitions. Thus,
variations of them ./p; with p; = pi(1) (i = c, d). For all relevant these simulations are only valid for a fully equilibrated system.
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(b)

(a)

Figure 5. Four representative snapshots from the Monte Carlo simulations described in the text. Snapshots a, b, and ¢ correspond to the same value
of the vesicle densityp = 0.2, witho = 0.16, 1.8, and 3.3, respectively; (a) and (b) correspond to the one-phase region whereas (c) is well inside
the two-phase region. In snapshopa= 0.5, = 2.0, corresonding to near-critical conditions.

Three of the snapshots shown in Figure 5 (a, b, and c) interacting lattice gas. These results become more relevant upon
correspond to the same vesicle densitys 0.2, but different transforming to experimentally controllabe parameters, such as
values of the sticker activity and hence different values of the vesicle and sticker concentrations:ando.

The values ofo were calculated using the appropridteand In addition to the inherent limitations associated with any
the average values df,,Nyo,Noo as obtained from the simula-  mean-field treatment and lattice model, we have made a number
tions. In Figure 5a, the sticker concentration is too low and of assumptions in order to simplify the underlying physical
the system is uniform. Ag increases large clusters appear, picture. For example, we have assumed that all adsorption sites
but the system is still one-phasic, very near the coexistenceare equivalent and that the adhesion energy between two vesicles
curve; see Figure 5b. In Figure 5c the system is already well is simply proportional to the number of binding contacts, thus
within the two phase region, showing very clearly the coexist- ignoring nonadditive effects associated with sticksticker

ence of dilute and condensed vesicle phases. Figure 5d showsnteractions and membrane elasticity. Notwithstanding these
atypical snapshot in the vicinity of the critical point, displaying reservations, the simple model described in this work provides

the familiar structures of near-critical clusters. a convenient, albeit mainly qualitative, scheme for analyzing
the equilibrium phase behavior of a system of particles governed
IV. Summary by cross-bridge mediated adhesion. Of course, this scheme is

not appropriate for describing the kinetic behavior of such
systems nor the appearance of metastable structures. Yet, any
metastable kinetic behavior should at least be contrasted with
the corresponding equilibrium thermodynamics of the system
in questiont® This has been our goal in this paper.

The statistical thermodynamic description of a solution
containing two types of solutes of different sizes, which are
governed by specific adsorption and binding interactions, such
as the vesicle sticker mixture considered in this work, is rather
complicated. Our mean-field approach to this problem, whereby
the occupations of sticker adsorption and binding sites on vesicle o
surfaces are replaced by their statistical averages, greatly Acknowledgment. We thank Joe Zasadzinski and Scott

simplifies this description. This approximate treatment becomes Walker for tshe\{eral hillpﬂrj]l ((j]hscuss!ons ta?d for|t|nf_(|3tr]mat|onk
even simpler upon transforming from the two-component concerning their unpublisned experimental results. This wor
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adsorbed and binding sites, also governs the effective interaction
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