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The phase behavior of a solution containing a mixture of large and small, cross-bridging (“two-sided sticker”)
particles is studied using a lattice model analyzed with the aid of mean-field calculations and Monte Carlo
simulations. Neither the large nor the small particles interact with each other (except for excluded volume
effects). However, the small particles can adsorb onto the surface of one or two large particles, in the latter
case providing a cross-bridge, i.e., an adhesive bond, between the large particles. The formulation of the
model is motivated by experimental studies involving aqueous solutions of vesicles (the large particles) and
biotin-avidin-biotin cross-bridges. This system exhibits a first-order phase transition from a dilute to a
condensed phase of vesicles once the average number of stickers per vesicle exceeds a certain threshold
value. The statistical thermodynamic description of the system becomes particularly simple upon (Legendre)
transformation from the two-component canonical ensemble to a “mixed” ensemble involving a constant
chemical potential of the cross-bridge particles. The phase separation behavior of the system is calculated
for two sets of molecular parametrs, revealing good qualitative agreement with relevant experiments.

I. Introduction

In this paper we present a simple statistical thermodynamic
model to describe a rather special condensation phenomenon:
the aggregation of large particles mediated by small, cross-bridge
particles. These cross-bridges induce a “specific adhesion”
process, which, above a certain critical concentration, can lead
to a macroscopic phase separation involving dilute and con-
centrated phases of the large particles.

The large particles in the model system that we have in mind
are lipid vesicles, i.e., closed, spheroidal but slightly deformable,
lipid bilayers, of diameters in the range of 50-100 nm,
embedded in an aqueous solution. A common example of a
cross-bridge particle is a biotin-avidin-biotin complex. The
avidin receptor has four biotin binding sites, two on each side.1

If some of the lipids constituting the vesicle membrane are
biotinated (i.e., chemically connected to biotin residues through
their hydrophilic headgroups), then by binding one or two biotin
ligands onboth of its sides, the water-soluble avidin can form
a cross-bridge between two vesicles. This biotin-avidin-biotin
bridge is often used as a model system for studyingspecific
adhesionphenomena, which are of great interest in a variety of
biological systems.1-3

A number of experimental and theoretical studies have
focused on studying the kinetic pathways and metastable
structures characterizing the avidin-mediated aggregation of
biotinated vesicles and related systems.4-6 Many other studies
have concentrated on measuring and interpreting the forces and
energies involved in avidin-biotin binding and cross-bridging,
and their dependence on factors such as membrane fluidity and
elasticity.7-16 Among the conclusions of these studies is that
the noncovalent avidin-biotin bond is generally much stronger
than the “hydrophobic” bond between the hydrocarbon tail of
the biotinated lipid and the vesicle membrane. Thus, once the

avidin is bound to a biotinated membrane lipid, pulling it off
the vesicle would result in detachment of the hydrophobic tail
from the membrane rather than in dissociation of the avidin-
biotin bond.8-13

The size and shape of the aggregates formed upon adding
avidin to a solution containing biotinated vesicles may strongly
depend onkinetic factors associated with the efficient and
essentially irreversible binding of the avidin to the biotinated
lipids. The rapid, avidin-mediated adhesion of vesicles can
result in the formation of long-lived (e.g, fractal) aggregates.4-6

However, the long-time behavior of this system may be quite
different since cross-bridged vesicles can still dissociate by
breaking the weaker bonds between the biotinated lipids and
the vesicle membrane. In other words, the equilibrium state of
the system is most likely goverened by the formation and
dissociation of these biotinated lipid-vesicle bonds and not the
avidin-biotin bonds. Indeed, recent experiments17 reveal that
in a solution containing a small concentration of receptors, say
five streptavidin molecules (A) per vesicle (V) (each vesicle
containing, on average, 80 biotinated lipids), the vesicles initially
aggregate into large clusters. However, after a while these
clusters redisperse into isolated vesicles. Furthermore, the
experiments show that the long-time behavior of these solutions
is independent of the mode of preparing the dispersion. Namely,
the state of aggregation depends only on the avidin to biotin
(A/V) ratio, indicating that the system has reached true
thermodynamic equilibrium. One clear conclusion from these
experiments is that macroscopic phase separation takes place
once A/V ≡ σ exceeds a certain critical value (σ ≈ 10, for
vesicles containing 80 biotinated headgroups).

Our goal in this paper is to explain, qualitatively, the
equilibrium phase behavior of a solution containing biotinated
vesicles and avidin cross-bridges. More generally, we are
interested in the phase behavior of a system containing large
particles, between which attraction takes place upon adding
small, cross-bridging particles into the mixture. To this end
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we have formulated a simple lattice model, each cell of which
can contain one vesiclesthus accounting for vesicle-vesicle
excluded volume interactions. We ignore the nonspecific long-
range attractions between vesicles but explicitly include the
indirect attractions mediated by the avidin cross-bridges. Fol-
lowing the experiments reported in ref 17, we assume that the
number of biotinated lipids greatly exceeds the number of avidin
receptors. For these conditions it is safe to assume that all the
biotin binding sites on the avidin receptor are occupied and
hence all cross-linkers (hereafter also referred to as “stickers”)
are actually (BL)2-A-(BL)2 complexes, with BL denoting a
biotinated lipid molecule. On the basis of the notion that the
BL-vesicle bond is considerably weaker than the BL-A bond,
the phase behavior of the system can be derived by treating it
as a mixture of vesicles and (BL)2-A-(BL)2 stickers.

II. Theory

A. Model. Consider an aqueous solution of total volumeV
and temperatureT, containing two kinds of particles:N large
particles representing the vesicles andn small particles repre-
senting the “stickers”. We assume that the vesicles are slightly
deformable spheres, all of the same diameterd. The stickers,
corresponding to the tight complex formed between streptavidin
and four biotinated lipids (two on each side), may be viewed
as a peg; each of its ends can adsorb onto the surface of one
vesicle. Two vesicles form a bound pair when they are bridged
by one or several stickers, as illustrated in Figure 1. This
sticker-induced adhesionbetween vesicles can lead to their
aggregation and eventaully to a macroscopic phase transition
from a dilute to a condensed phase of vesicles.

The phase behavior of this system will be analyzed on the
basis of a lattice model, which will be solved using a mean-
field approximation. The use of the lattice ensures that excluded
volume interactions between the vesicles are taken into account.
More significantly, the model explictly accounts for sticker-
vesicle adsorption and sticker-mediated attraction between the
vesicles. Sticker-sticker and sticker-vesicle excluded volume
interactions are taken into account in an approximate fashion.
Some of the qualitative conclusions derived from the mean-
field analysis will be tested against Monte Carlo (MC) simula-
tions of a 2D model system.

Recall that in the mean-field approximation neither the
dimensionality nor the exact geometry of the lattice is taken
into account; the only relevant structural parameter is the lattice
coordination number,z. Nevertheless, for concreteness, let us
regard the system as a 3D cubic lattice, consisting ofM sites of
volume V ) V/M ) d3, so that each site can contain exactly
one vesicle, Figure 1. Since the stickers are much smaller than
the vesicles, each vacant lattice site can contain a large number
of stickers,s; s is approximately equal to the ratio between the
vesicle’s volume and the volume of a biotin-avidin-biotin
cross-bridge.

Three kinds of stickers are possible in the system: (i) “bridge”
(b) stickers connecting two nearest-neighbor vesicles; (ii)
“adsorbed” (a) stickers whose one end is anchored to the surface
of a vesicle and the other is free; (iii) “free” (f) stickers both
ends of which are free. We shall useνb to denote the maximal
number of stickers that can serve as connectors between the
same two, nearest-neighbor vesicles. In principle,νb depends
on the contact area between adjacent vesicles, which, in turn,
depends on their deformability. The maximal number of stickers
that can adsorb onto the surface of one vesicle will be denoted
aszνa. In our lattice model this implies thatνa is the maximal
number of stickers that can populate a face of the lattice
separating between two neighboring sites, one empty and the
other occupied by a vesicle. Finally, we usezνf/2 ) s to denote
the maximal number of free stickers per vacant lattice site. (We
may regardνf as the maximal number of stickers on a lattice
face separating two vacant sites.) From this description it
follows that we can imagine the a and b stickers as moving on
the faces of the lattice cells, whereas the f stickers populate the
vacant lattice cells. The conditions of experimental relevance
correspond toνf . νa > νb.

The energy change involved in the adsorption of one end of
a sticker to a vesicle will be denoted as -kTεa, where k is
Boltzmann’s constant andT the absolute temperature; i.e.,εa

> 0 is the sticker-vesicle interaction energy, in units ofkT.
We ignore nonadditivity effects, assuming that the adsorption
energy is independent of the number of adsorbed stickers.
Similarly, we assume that the binding energy associated with
the formation of a sticker bridge between two vesicles,kTεb, is
independent of the number of bridges. Typically,εb ≈ 2εa; yet,
we shall treatεb and εa as independent variables. Note that
these energies are measured with respect to the energy of the
free sticker,εf ≡ 0.

B. Free Energy. Every configuration,{C}, of theN vesicles
on theM lattice sites dictates the number ofR sites,mR, available
to the three types of stickers in the system;R ) f, a, b. Since
free stickers can only be found in vacant lattice cells,mf ) s(M
- N) ) (1/2)zVfM(1 - F), whereF ) N/M is the density (volume
fraction) of vesicles in the system. In principle, one can include
in mf the small fraction of free stickers that may be present in
the “corners” of a site already occupied by a vesicle. This
refinement does not affect our conclusions and will therefore
be ignored.

Bridge stickers, connecting nearest-neighbor vesicles, are
necessarily confined to the faces between pairs of lattice sites
occupied by vesicles. Using the above defintion ofνb we have
mb ) νbNvv whereNvv is the number of doubly occupied pairs
of nearest-neighbor sites. Forma we havema ) νa N0v+(2νa-
νb)Nvv, whereN0v is the number of singly occupied site pairs.
The second term inma accounts for those adsorbed stickers at
doubly occupied faces that do not form bridges.

Consider now a particular configuration,{C}, of the N
vesicles on theM lattice sites. The Helmholtz free energyof

Figure 1. Schematic illustration of the model on a 2D square lattice.
Each lattice site can accommodate one vesicle (large particle). The
cross-bridging “stickers” are either free (f), i.e., dispersed among the
vacant sites, or adsorbed (a) onto an exposed surface of a vesicle, or
adsorbed onto the surfaces of two neighboring vesicles, thus forming
an adhesive bond (b).
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the stickerscorresponding to this“frozen” configuration,
Fs({C}), is given by

whereSR is the entropy, per sticker site, corresponding to stickers
of type R. Note that in (1) and elsewhere in this paper we
measure energies, free energies, and chemical potentials in units
of kT and entropies in units ofk.

Assuming that except for excluded volume (or area) effects
the stickers do not interact with each other, we can write

whereθR ) nR/mR is the fractional occupation ofR sites by
stickers andnR is the number of stickers of typeR; ∑(R) nR )
n. Note thatθf is, in fact, a volume fraction whereasθa andθb

are area fractions.
The equilibrium values of thenR’s, and hence theθR’s, can

be determined by minimzingFs with respect to these variables.
The minimum conditions lead, as expected, to the equality of
chemical potentials

with

denoting the chemical potential ofR-type stickers;λ ) exp(µs)
is the absolute activity of the stickers. Sinceεf ) 0, we findλ
) θf/(1 - θf). Also, since typicallyεb ≈ 2εa > 10, it follows
thatθb . θa . θf and henceθf , 1, implying λ = θf; i.e., the
activity is equal to the concentration of free stickers.

At this point we introduce the mean-field approximation,
replacingNvv andN0v by their values corresponding to a random
distribution of the vesicles; namelyNvv ) (1/2)zMF2 andN0v

) zMF(1 - F). This yields

Using thesemR’s in (1) we obtain the mean-field value of
the stickers free energy,Fhs. Adding the entropySv associated
with the (random) distribution of theN vesicles over theM
lattice sites, we obtain the total free energy of the system

where the expression in square brackets is the vesicles’ entropy
per lattice site,-Sv/M.

To analyze the phase behavior of the system, it is convenient
to perform a Legendre transformation from the Helmholtz free
energy F ) F(N, n, M, T) to the “mixed” thermodynamic
potentialΓ ) Γ(N, µs, M, T),

where in the last equality we have used the relationθR ) λêR/
(1+ λêR) with êR ≡ exp(εR).

The above expression forΓ can now be used to evaluate the
(dimensionless) osmotic pressure in the system,P ) -(∂F/
∂M)T,N,n ) -(∂Γ/∂M)T,N,λ, as well as the chemical potential of
the vesicles,µv ) (∂F/∂N)T,M,n ) (∂Γ/∂N)T,M,λ. These relations
yield

with ø given by

The first two terms in the equation of state, (9), constitute
the familiar expression for the pressure of an interacting lattice
gas of densityF in the Bragg-Williams approximation.18 In
the case of an ordinary lattice gas the interaction parameterø
is simply related toω, the pair potential between two particles
occupying nearest-neighbor sites;ø ) zω/kT. In our system
this direct interaction potential is replaced by the sticker-
mediated interaction defined by (11), which depends on the
stickers’ chemical potential,µs ) ln λ, and the adsorption and
binding energiesêa, êb. Indeed, it is not difficult to show that
kTø/z ≡ ωeff is the (negative) free energy change associated
with bringing two remote vesicles into contact (nearest-neighbor
positions), at constant chemical potential of the stickers.

The last term in (9) is the contribution to the pressure arising
from the free stickers in the system. Recall thatzνf/2 is the
number of stickers per lattice site. Note also that the adsorbed
and bound stickers do not contribute to the pressure in the
system. (Of course, the bound stickers affect, throughø, the
number of vesicle clusters and hence the pressure in the system.)
In analogy to (9) the first two terms in (10) correspond to the
chemical potential of an interacting lattice gas of vesicles of
densityF. The two last terms in (10) represent the change in
the free energy of the system (the reversible work), associated
with adding a single (“immobile”) vesicle to a system already
containing stickers with the given chemical potentialµs.

C. Phase Behavior. Under certain conditions the sticker-
mediated interactions between the vesicles can induce a
macroscopic phase separation, with the two coexisting phases,
hereby denoted as d (“dilute”) and c (“condensed”), character-
ized by different vesicle densities and different sticker concen-
trations. At a given temperature, there are three equilibrium
conditions: equality of pressuresP(d))P(c), vesicle chemical
potentialsµ(d)

V ) µ(c)
V, and stickers’ chemical potentialsµs

(d) )
µs

(c). The third condition is automatically ensured if the
pressures and chemical potentials of the coexisting phases are
calculated using (9) and (10) for the same value ofλ in the two
phases. In other words, our coexistence equations are

Γ ) F - nµs (7)

) -MSv + ∑
R

mR ln(1 - θR) (8)

) -MSv - ∑
R

mR ln(1 + λêR)

P ) - ln(1 - F) - 1
2

øF2 + 1
2
zνf ln(1 + λ) (9)

µv ) ln( F
1 - F) - øF - zνa ln(1 + λêa) + 1

2
zνf ln(1 + λ)

(10)

ø ) zνb ln(1 - θa

1 - θb
) ) zνb ln(1 + λêb

1 + λêa
) (11)

Fs ) ∑
R

[nRεR + mRSR] (1)

-SR ) θR ln θR + (1 - θR) ln(1 - θR) (2)

µf ) µa ) µb ≡ µs ≡ ln λ (3)

µR ) ln
θR

1 - θR
- εR (4)

mf ) 1
2
zM(1 - F)νf (5)

ma ) zMF(1 - F)νa + 1
2
zMF2(2νa - νb) ) 1

2
zMF(2νa - Fνb)

mb ) 1
2
zMF2νb

F ) Fhs + M[F ln F + (1 - F) ln(1 - F)] (6)
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Using (9) and (10) in (11) and (12), we obtain the equation
describing the coexistence curve, which separates between the
one-phase and two-phase regimes

The spinodal curve, corresponding to∂2P/∂F2 ) 0 , is given by

Both of the above equations imply the existence of a critical
point atF ) Fc ) 0.5 andø ) øc ) 4. Not surprisingly, the
shape of the coexistence and spinodal curves, as well as the
critical values ofø andF, are those of an ordinary lattice gas.18

The only diffrence between our system and the lattice gas is
that in our case the magnitude of the interaction parameter,ø,
is controlled by the stickers’ chemical potential through (11).
Substituting (11) into (14) and (15), we obtain the coexistence
and spinodal curves in theF-λ plane. These curves depend of
course on the molecular parametersz, νb, εa, εb. In Figure 2
we show these curves forz ) 12,νb ) 4, andεb ) 2εa ) 10. In
theF-λ plane the dilute and concentrated phases, at coexistence,
are connected by horizontal tie-lines. Experimentally, the
overall sticker concentrationn/M or, equivalently, the sticker-
to-vesicle concentration ratioσ ≡ n/N, are more convenient
control parameters thanλ. Thus, our numerical results in the
next section will be reported in terms ofσ-F diagrams. In
this representation the coexistence curves are not symmetrical
as in Figure 2, and the tie-lines are not straight.

Because phase separation can only take place ifø > øc ) 4,
it follows from (11) that for any given values ofêa andêb there
is a critical value of the sticker activity,λc, such that phase
separation takes place only ifλ g λc. (In Figure 2λc is the
lowest point on the coexistence curve, atF ) 0.5). Explicitly

wherec ) exp(4/zνb). For εb ) 2εa ) 10 andz ) 12, νb ) 4,
as in Figure 2, we find thatλc ≈ (c - 1)/êb ≈ 4/zνbêb is very
small, on the order of 10-5. Other reasonable choices ofz and
νa would yield similar estimates. Forλ , 1 we haveλ ≈ θf ,
1, indicating that the concentration of free stickers in a phase-
separated system is generally very small. Of course,θb, the
(surface) concentration of binding stickers, is much higher,
ensuring the formation of a condensed phase of vesicles. Note
also that, at a given temperature, an upper bound on the value
of ø is set in the (hypothetical) limit of high concentration of
free stickers, (λ f ∞). In this limit ø f zνb ln(êb/êa) ) zνb(εb

- εa), indicating thatνb(εb - εa) ) ωeff is the effective pair
potential between two vesicles. Indeed, in the limit of highλ
all the adsorbing and binding sites on the surface of the vesicles
are occupied (θa, θb f 1), implying thatνb(εb - εa) is the energy
change associated with bringing two isolated vesicles (already
“covered” by stickers) into close, binding, contact. In general,
as noted above, condensation already takes place at very low
concentrations of stickers.

III. Examples and Analysis

In the two-phase region a dilute phase of vesicles of density
Fd coexists with a condensed phase of densityFc ) 1 - Fd.

The chemical potential of the stickers in the two phases are
equal, but not their concentrationsφ ) n/M ) σF; as beforeσ
) n/N denotes the number of stickers per vesicle. For every
value of the stickers’ activity,λ (λ > λc), the values ofσd and
σc can be determined usingσi ) ∑Rmi,R(λ, Fi)θR(λ)/MFi, (i ) d,
c). The 1/σ vsF phase diagrams obtained in this way are shown
for two representative cases in Figures 3 and 4. The solid curves
in these figures separate between the one- and two-phase
regions. The dashed tie-lines connect between the coexistence
points, Fd, σd and Fc, σc (each pair corresponds to the same
values ofλ, µv, and P). The σ(F) tie-lines in the two-phase
region are calculated using the conservation conditions (“lever
rules”), F ) γdFd + γcFc andσF ) γdσdFd + γcσcFc, whereγi

) Mi/M is the volume fraction of theith phase (i ) d, c). These
two equations yieldσ ) (σc - σd)/F + (Fcσc - Fdσd)/(Fc - Fd).

The phase diagram in Figure 3 corresponds to the following
choice of model parameters:z ) 12, νf ) 700,νa ) 50, νb )

P(d)(F(d); λ, T) ) P(c)(F(c); λ, T) (12)

µv
(d)(F(d); λ, T) ) µv

(c)(F(c); λ, T) (13)

øcoexistence)
2

|1 - 2F| ln(1 + |1 - 2F|
1 - |1 - 2F|) (14)

øspinodal)
1

F(1 - F)
(15)

λc ) c - 1
êb - cêa

(16)

Figure 2. Coexistence (solid) and spinodal (dashed) curves in theF
- log λ plane, whereF denotes the volume fraction of vesicles andλ
the activity of the stickers. These curves correspond to a system with
z ) 12, νb ) 4, andεb ) 2εa ) 10.

Figure 3. Coexistence (solid) curve, separating between the one- and
two-phase regions in theF-1/σ plane, for a system withz ) 12, νb )
4, νa ) 100,νf ) 700, andεb ) 2εa ) 10. The open circle marks the
critical point. The dashed tie-lines correspond to different values of
sticker activityλ: from top to bottom,λ/10-6) 4.08, 4.62, 6.11, 7.08,
7.98, 9.01, 9.88, 11.4.
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4, andεb ) 2εa ) 10. The results in Figure 4 correspond toz
) 4, νf ) 50,νa ) 15,νb ) 2, andεb ) 2εa ) 10. The first set
of parameters corresponds, albeit very crudely, to a 3D system
of vesicles (of diameterd ≈ 100 nm) and biotin-avidin-biotin
cross-bridges (of cross-sectional area and volume on the order
of 30 nm2 and 10 nm3, respectively). The values used forεa

and εb are considerably smaller than those estimated, on the
basis of force measurements, for the energies associated with
pulling out the chains of the biotinated lipids from their host
membrane.8-13 It should be noted, however, that these mea-
surements provide estimates for the pull-out energy of a
stretched lipid chain. On the other hand, once the complex is
free in solution (as we assume for our stickers), the hydrophobic
lipid tails are mostly likely collapsed, thus reducing the
unfavorable exposure of the hydrocarbon chains to water,
implying a lower value ofεa as compared to that obtained by
force measurements. At any rate, it should be emphasized that
our very approximate model calculations are not intended to
simulate any specific experimental system but, rather, to provide
a qualitative explanation for some of the phenomena observed.
In the same spirit, the “molecular” parameters used to obtained
the results in Figure 3 correspond to a hypothetical 2D model
system. The same parameters were also used in the MC
simulations described later in this section.

Returning to Figures 3 and 4 we note that asλ exceedsλc

and phase separation begins to take place, the average number
of stickers per vesicle in the condensed phase is larger than in
the dilute phase;σc > σd. Upon further increasingλ the
difference∆σ ) σc - σd continues to increase, reaching a
maximum, beyond which it decreases monotonically withλ,
eventually becoming negative. The crossover from positive to
negative∆σ occurs “deep” in the coexistence region (i.e., when
Fd ) 1 - Fc , 1), whereσd increases much faster thanσc. A
qualitative explanation of this behavior can be given as follows.

Since for a givenλ the θR’s in both phases are equal, the
difference between theσi,R ) ∑Rmi,R(Fi)θi/MFi reflects the
variations of themi,R/Fi with Fi ) Fi(λ) (i ) c, d). For all relevant

values ofλ (those shown in Figures 3 and 4),θb . θa . θf.
Now, an increase inλ - λc implies an increase inFc - Fd, and
hence fast increase ofmb,c and fast decrease ofmb,d. Since the
b-stickers provide the main contribution toσ (throughmb) we
find that, initially, σc increases whereasσd decreases. Asλ
increases further,Fc f 1 whereasFd f 0, implying thatmb,c

approaches a finite saturation value (mb,c f zνb/2), whereasmf,d/
Fd increases without bound. This explains the rapid increase
in σd as compared toσc at high values ofλ (equivalently,Fc).
Note, however, that for most values ofF within the two-phase
region the majority of stickers are present (as cross-bridges) in
the condensed phase. The adsorbed (a) stickers play a secondary
role in this interplay as their coverage (θa) is the same in both
phases.

A conclusion of experimental relevance that can be derived
from the calculations shown in Figures 3 and 4 involves the
phase behavior of the mixture upon varying the average number
of stickers per vesicle (σ) at constant, low, concentration of
vesicles, say,F ≈ 0.01, as was done in ref 17. We note that at
this, low F, region of the phase diagram the phase boundary
(σ(F)) increases rapidly withF. In other words,σd is a very
sensitive function ofFd; (on the other handσc andFc vary quite
slowly). This implies that, at constant (small)F, vesicle
condensation will only take place ifσ exceeds a ceratin minimal
value (σd); resulting in phase separation between a very dilute
and a highly condensed phase of vesicles. Indeed, in the
experiments reported in ref 17 it was found that forF ≈ 0.01
no transition takes place whenσ ) 5 whereas whenσ ) 10
macroscopic aggregates of vesicles appeared in solution,
indicating 5< σd < 10.

Finally, in Figure 5 we show four representative snapshots
of MC simulations performed on a 2D square lattice, using the
same molecular parameters as those in the mean-field calcula-
tions of Figure 4 (νf ) 50, νa ) 15, νb ) 2, z ) 4, εb ) 2, εa

) 10). Of course, we do not expect to find quantitative
agreement between the mean-field predictions and the simula-
tions. (It is well-known, for example, that the mean-field value
of the critical interaction parameterøc ) 4 of an interacting 2D
lattice is about 1.75 times smaller than the exact value.18)

The simulations were performed in the same (N, λ, M, T)
statistical ensemble as the mean-field calculations. That is,N
particles (vesicles) were allowed to move on aM ) 100× 100
square 2D lattice, with periodic boundary conditions. More
explicitly, choosing a given sticker activity,λ, random MC
moves were attempted and accepted or rejected according to
the usual Metropolis criterion, using∆E ) Fs({C′}) - Fs({C})
as the “energy difference” associated with the attempted move;
Fs({C′}) andFs({C}) denote the free energies corresponding,
respectively, to the final and initial configurations of the vesicles,
cf. (1). Note that the stickers are not explicitly included in the
simulation. Their distribution among the various vesicles, for
any configuration{C}, was calculated using the chemical
equilibrium conditions (4). More explicitly, in each MC step,
the interaction energy between two neighboring vesicles was
calculated asνbθbεb, with θb calculated using (3) and (4).
Similarly, the energy of an isolated vesicle is given byzνaθaεa,
etc. In other words, in these simulations the distribution of
stickers is equilibrated at each MC step. Physically, this
assumption is valid when the lateral diffusion of the stickers
over the vesicle surfaces and in and out of the bulk is
instantaneous (on the time scale of vesicle diffusion), regardless
of the barrier heights associated with such transitions. Thus,
these simulations are only valid for a fully equilibrated system.

Figure 4. Coexistence (solid) curve, separating between the one-phase
and two-phase regions in theF-1/σ plane, for a system withz ) 4, νb

) 2, νa ) 15, νf ) 50, andεb ) 2εa ) 10. The open circle marks the
critical point.
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Three of the snapshots shown in Figure 5 (a, b, and c)
correspond to the same vesicle density,F ) 0.2, but different
values of the sticker activityλ and hence different values ofσ.
The values ofσ were calculated using the appropriateλ and
the average values ofNvv,Nv0,N00 as obtained from the simula-
tions. In Figure 5a, the sticker concentration is too low and
the system is uniform. Asσ increases large clusters appear,
but the system is still one-phasic, very near the coexistence
curve; see Figure 5b. In Figure 5c the system is already well
within the two phase region, showing very clearly the coexist-
ence of dilute and condensed vesicle phases. Figure 5d shows
a typical snapshot in the vicinity of the critical point, displaying
the familiar structures of near-critical clusters.

IV. Summary

The statistical thermodynamic description of a solution
containing two types of solutes of different sizes, which are
governed by specific adsorption and binding interactions, such
as the vesicle-sticker mixture considered in this work, is rather
complicated. Our mean-field approach to this problem, whereby
the occupations of sticker adsorption and binding sites on vesicle
surfaces are replaced by their statistical averages, greatly
simplifies this description. This approximate treatment becomes
even simpler upon transforming from the two-component
canonical ensemble (N, n, M, T) to the mixed, canonical-grand
ensemble (N, λ, M, T), where the various sticker populations
are determined by the two variables,λ and F ) N/M. In
particular, λ, which controls the occupation probabilities of
adsorbed and binding sites, also governs the effective interaction
potential between the vesicles. Thus, it is not surprising that
the phase behavior predicted by Figure 2 and illustrated by MC
simulations in Figure 5 appears identical to that of an ordinary

interacting lattice gas. These results become more relevant upon
transforming to experimentally controllabe parameters, such as
the vesicle and sticker concentrations:F andσ.

In addition to the inherent limitations associated with any
mean-field treatment and lattice model, we have made a number
of assumptions in order to simplify the underlying physical
picture. For example, we have assumed that all adsorption sites
are equivalent and that the adhesion energy between two vesicles
is simply proportional to the number of binding contacts, thus
ignoring nonadditive effects associated with sticker-sticker
interactions and membrane elasticity. Notwithstanding these
reservations, the simple model described in this work provides
a convenient, albeit mainly qualitative, scheme for analyzing
the equilibrium phase behavior of a system of particles governed
by cross-bridge mediated adhesion. Of course, this scheme is
not appropriate for describing the kinetic behavior of such
systems nor the appearance of metastable structures. Yet, any
metastable kinetic behavior should at least be contrasted with
the corresponding equilibrium thermodynamics of the system
in question.19 This has been our goal in this paper.
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